Quantum Conductance in Silicon Oxide Resistive Memory Devices

نویسندگان

  • A. Mehonic
  • A. Vrajitoarea
  • S. Cueff
  • S. Hudziak
  • H. Howe
  • C. Labbé
  • R. Rizk
  • M. Pepper
  • A. J. Kenyon
چکیده

Resistive switching offers a promising route to universal electronic memory, potentially replacing current technologies that are approaching their fundamental limits. In many cases switching originates from the reversible formation and dissolution of nanometre-scale conductive filaments, which constrain the motion of electrons, leading to the quantisation of device conductance into multiples of the fundamental unit of conductance, G0. Such quantum effects appear when the constriction diameter approaches the Fermi wavelength of the electron in the medium - typically several nanometres. Here we find that the conductance of silicon-rich silica (SiOx) resistive switches is quantised in half-integer multiples of G0. In contrast to other resistive switching systems this quantisation is intrinsic to SiOx, and is not due to drift of metallic ions. Half-integer quantisation is explained in terms of the filament structure and formation mechanism, which allows us to distinguish between systems that exhibit integer and half-integer quantisation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conductance Quantization in Resistive Random Access Memory.

The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optic...

متن کامل

Current Versus Voltage Characteristics of a Si Based 1-Diode Type Resistive Memory with Cr-SrTiO3 Films

In this paper, in order to suppress unwanted current paths originating from adjacent cells in a passive crossbar array based on resistive random access memory (RRAM) without extrinsic switching devices, 1-diode type RRAM which consists of a 0.2% chromium-doped strontium titanate (Cr-SrTiO3) film deposited on a silicon substrate, was proposed for high packing density, and intrinsic rectifying ch...

متن کامل

Access devices for 3D crosspoint memorya)

The emergence of new nonvolatile memory (NVM) technologies—such as phase change memory, resistive, and spin-torque-transfer magnetic RAM—has been motivated by exciting applications such as storage class memory, embedded nonvolatile memory, enhanced solid-state disks, and neuromorphic computing. Many of these applications call for such NVM devices to be packed densely in vast “crosspoint” arrays...

متن کامل

Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon.

TiO2 is being widely explored as an active resistive switching (RS) material for resistive random access memory. We report a detailed analysis of the RS characteristics of single-crystal anatase-TiO2 thin films epitaxially grown on silicon by atomic layer deposition. We demonstrate that although the valence change mechanism is responsible for the observed RS, single-crystal anatase-TiO2 thin fi...

متن کامل

Emulating the Electrical Activity of the Neuron Using a Silicon Oxide RRAM Cell

In recent years, formidable effort has been devoted to exploring the potential of Resistive RAM (RRAM) devices to model key features of biological synapses. This is done to strengthen the link between neuro-computing architectures and neuroscience, bearing in mind the extremely low power consumption and immense parallelism of biological systems. Here we demonstrate the feasibility of using the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013